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We present a new algorithm for solving nonlinear wave equations 
when initial data is specified on characteristic surfaces. The algorithm 
is directly applicable to hyperbolic systems such as Maxwell, 
Yang-Mills, and gravitational fields. The basic principles should also be 
applicable to hydrodynamics. It is an especially effective approach for 
studying radiation fields. We show that this method is stable, globally 
convergent to second order in the grid spacing, and satisfies an energy 
conservation law. We carry out numerical studies of scalar wave equa- 
tions with nonlinear self-interactions for some examples of physical 
interest. We observe nonlinear phenomena such as backscattering, 
radiative tail decay, and approximate analogues to solitons in three 
dimensions. 0 1992 Academtc Press. Inc 

1. INTRODUCTION 

This paper presents some new numerical techniques for 
studying radiation problems in hyperbolic physical systems. 
The physical algorithm underlying these techniques is 
radically different from the conventional approach which is 
based upon time evolution of data given at all points of 
space at the same initial instant of time. Rather it uses 
concepts developed in the 1960s for studies of gravitational 
radiation in general relativity [ 1,2]. These were prompted 
by the inability of the major classical tools such as Green’s 
functions and Fourier analysis to overcome the difficulties 
posed by nonlinearities and gauge freedom. 

Such techniques were originally designed for theoretical 
investigation of the asymptotic behavior of radiation fields. 
Recently, interest has turned to global questions, and 
numerical methods based on these algorithms appear to 
hold much promise as a new tool to investigate these 
complex problems [3,4]. 

This approach is based upon two novel ingredients: 

l the dominant role of characteristic surfaces and 

. the use of compactification methods to describe 
asymptotic properties of radiation. 

Characteristic surfaces are the natural tool to use to 
describe radiation in complex situations. In theoretical 
analysis it has sometimes been very fruitful to use an initial 
value scheme which describes time evolution by means 
of a family of characteristic surfaces. This “characteristic 
initial value problem” (CIVP) provides a substitute for the 
familiar Cauchy scheme utilizing a family of successive 
constant time surfaces to describe dynamical change. For 
the CIVP, initial data is supplied on a characteristic surface 
connecting points of space at different times. This approach 
also demands a completely different form of the mathe- 
matical equations and the free initial data. 

Compactifj:cation methods which provide a rigorous 
description of asymptotic radiative properties have been 
based upon characteristic surfaces [2]. The key idea is to 
introduce a new radial coordinate which ranges over values 
from 0 to 1 as the actual distance from the source ranges 
from 0 to co. The field equations for the radiative field 
modes are rewritten in terms of these new coordinates. 
Then, delicate asymptotic questions regarding behavior in 
the neighborhood of the point at infinity may be studied in 
terms of the new coordinate which ranges over finite values. 
In this way, the concept of an asymptotic limit at infinity 
can be given rigorous meaning. Characteristic surfaces are 
important here since it is in the approach to infinity along 
these surfaces, not along Cauchy surfaces of constant time, 
that radiation fields dominate. Even for field equations as 
complicated as those of general relativity, this procedure 
provides not only a rigorous but also an invariant geo- 
merical description of the limit points at infinity reached 
along characteristic surfaces. Within the literature of rela- 
tivity, these limit points which form a boundary to the 
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compactilied space-time manifold, are referred to as future 
or past null infi&y [2]. Here we will use the alternative 
name radiatiue infinity which seems more appropriate in this 
context. 

There exists a well-established methodology for applying 
characteristics to the study of hyperbolic systems in one 
space and one time dimension [S]. The advantages of this 
approach stem from the direct way that characteristics 
relate a region 52 to its domain of dependence D(Q) such 
that the solution is uniquely determined by initial data in 
D(Q). This leads to the important result that shock fronts 
only occur across characteristics. Furthermore, the evolu- 
tion equations give rise to ordinary differential equations 
along the characteristics which impose constraints on the 
propagation of shock discontinuities. Such considerations 
make it important for the purpose of numerical solution to 
enforce the propagation along characteristics as extensively 
as possible. 

Waves of amplitude @ traveling in one spatial dimension 
with speed c satisfy 

where subscripts denote partial derivatives with respect to 
the independent variables. In this case, there are two 
characteristics (x - x0) = f ct through each spatial point 
x0. In terms of characteristics coordinates u = ct -x and 
u = ct + x, Eq. (1) becomes 

@U” = 0, (2) 

with solutions @ =f(u) + g(u). Here g’(o) = a,@ is the 
quantity which satisfies the propagation equation 

f Cd(o)1 = 0 (3) 

along the characteristics in the u-direction. These ideas 
can be implemented numerically by introducing an (x, t) 
grid satisfying Ax = c At, so that the characteristics pass 
through diagonal grid points. An exceptional feature of the 
one-dimensional wave equation is that it can be recast 
without error as a finite difference equation on such a grid. 
In this simple case, that is the essence of the method of 
characteristics in one spatial dimension. In practice, the 
application to numerical solution techniques has been 
predominantly based upon the conventional Cauchy 
problem on an (x, t) grid, with initial data @(x, to) and 
@,(x, to) posed at time t,. This Cauchy data is then 
propagated to data at time tn = t, + n At by a finite dif- 
ference version of characteristic propagation equations such 
as Eq. (3). Colloquially, this is referred to as “shooting 
along characteristics.” 

For hyperbolic systems with two or more spatial dimen- 
sions, the manner in which characteristics determine 
domains of dependence and lead to propagation equations 
is qualitatively the same. The major difference is that an 
infinite number of characteristics now pass through each 
point. In the case of the three-dimensional wave equation, 

+,,-@,,-@,.,-@;:=O, (4) 

the characteristics which pass through the point (x,, yO, zO) 
at time t, are the straight lines which generate the null cone 
or characteristic cone 

(X-X0)2+(y-yo)*+(Z-zo)2-c2(t-t0)*=0. (5) 

The future (past) null cone consists of the radially outward 
(inward) characteristics parameterized by t > t, (t < to). 
There is a two-parameter set of characteristics through each 
point corresponding to the sphere of angular directions 
(0, 4) at that point. This leads to some arbitrariness in 
formulating an evolution algorithm for Cauchy data based 
upon shooting along characteristics. There are an infinite 
number of characteristics and associated propagation 
equations which can be used to evolve Cauchy data at time 
t, to a point P at time t, + At. 

For a practical numerical scheme, it is thus necessary 
either to average these propagation equations appropriately 
over the sphere of characteristic directions at P or select 
out some finite number of characteristics whose propa- 
gation equations comprise a nonredundant set. The latter 
approach has been successfully carried out by Butler [6]. 
For the case of plane flow of an inviscid fluid (a problem in 
two spatial dimensions), he formulates a shooting algorithm 
based upon four “preferred” characteristics. In this problem, 
the geometry is further complicated because the charac- 
teristics are dynamically dependent upon the fluid variables, 
in contrast to the essentially time independent null cones 
of Eq. (5). In the numerical scheme, the characteristics 
must themselves be determined by some numerical approx- 
imation. 

The procedure presented in this paper avoids some of the 
arbitrariness and awkwardness of Butler’s method by using 
a characteristic initial value approach rather than a Cauchy 
approach. In order to understand the distinction, it is 
essential to view space-time as four-dimensional, with initial 
data given on a three-dimensional hypersurface. More 
specifically, initial data is now posed on an initial outgoing 
characteristic cone emanating from the origin, described in 
terms of some constant uO rather than by posing data on a 
spatial hypersurface t = t,. The evolution then proceeds 
iteratively to characteristic cones u, = uO + n Au. These out- 
going characteristic hypersurfaces are intrinsically built into 
the numerical grid. Furthermore, in evolving from u,, to 
u ,,+ 1, we use an integral version of a shooting algorithm 
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based only upon characteristics which are uniquely and 
intrinsically picked out by the geometry of the initial data 
hypersurfaces. 

In this paper, we show how these concepts provide the 
physical basis for a new numerical algorithm. Our aim 
is to present this approach and to illustrate it with some 
applications restricted to the case of scalar fields obeying 
linear and nonlinear wave equations. The nonlinear equa- 
tions considered here have the simplifying feature that 
their characteristics have the form of Eq. (5), which is 
independent of the dynamics of the wave. However, the 
evolution algorithm which we develop can be taken over 
intact, except for boundary conditions, to many other 
hyperbolic physical systems including electromagnetic 
fields, Yang-Mills gauge fields, as well as to general 
relativity in which the characteristics are dynamically 
dependent. This flexibility is the result of choosing a 
numerical finite-difference evolution algorithm based upon 
a form of the evolution equations common to all these 
systems. All these theories have a common mathematical 
structure of second-order differential hyperbolic equations. 
Although we have not explored how our approach might be 
implemented in the case of first-order differential hyperbolic 
systems, such as hydrodynamics, the same general principle 
should be applicable. 

In our algorithm, we use coordinates u = ct - 9, r = 9, 0, 
and 4. We call u the “retarded time,” and v = ct + 8 the 
“advanced time.” The outgoing radial characteristics are 
the curves of constant u, 0, and 4. These are the curves in 
the r-direction shown in Fig. 1. In these coordinates, the 
SWE takes the form 

2(G),, = (r@),, - q. 

The striking feature about Eq. (9) is that it is only first 
order in retarded time U, unlike the more familiar form of the 
SWE (6) which is of second order when written in terms of 
time t. When data is given on a characteristic initial hyper- 
surface u = uO, we need only specify the value of the field @, 
and then use Eq. (9) to calculate its retarded time derivative 
and evolve the initial data. This is in constrast to the con- 
ventional Cauchy scheme, where different initial data (the 
value of @ and its first time derivative) is supplied on the 
surface t = t, and Eq. (6) is used to compute the second 
time derivative so that this data can be evolved to a later 
value of t. 

In Section 2 we discuss how a simple identity based upon 
characteristics can be used to convert the wave equation 
to an integral equation. This forms the basis for a finite 
difference scheme presented in Section 3. Numerical results 
are illustrated in Section 4. To test the algorithm, computed 
results are compared to known analytic solutions. Ques- 
tions of convergence and stability are studied both analyti- 
cally and through numerical tests. Physical results are 
summarized in Section 5, where consequences of evolution 
for nonlinear fields are discussed. 

Numerical solution of the SW’E is accomplished by a 
novel technique. Rather than differencing Eq. (9), this 
partial differential equation is first converted to an integral 
equation which is subsequently discretized. The method will 
be applied to the generalization of the SWE with nonlinear 
source terms 

2. THEORY OF THE SCALAR WAVE EQUATION 

2.1. The Characteristic Initial Value Problem 

We wish to study the numerical solution of the scalar 
wave equation (SWE) with appropriate initial data. The 
SWE is often written in spherical polar coordinates t, ,%?, 8, 
4 in the form 

9 = J(x’ + y2 + 2), (7) 

where c is the wave velocity and L2 denotes the usual 
angular momentum operator 

L2G = _ (sin ~J@B)o @M 
sin 9 sin’ 8’ (8) 

‘;; constant 

FIG. 1. Line segments drawn at 45” to the vertical represent radial 
characteristics. Their intersection defines the fundamental parallelogram 
PQRS which is used in our numerical method. 

581/98:1-2 
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or, using advanced and retarded time coordinates, 

where g = r@. 
In the u - r plane formed by fixing the angular coor- 

dinates (0,4), we construct a parallelogram made up of in- 
coming and outgoing radial characteristics which intersect 
at vertices P, Q, R, S as depicted in Fig. 1. By integrating 
Eq. (11) over the area C bounded by these vertices, we may 
establish the identity 

gn=gp+gs-g,+i 

This remarkably simple identity is the starting point for 
the numerical algorithm for time development of the field. 
It incorporates the essential geometrical role that character- 
istics play in the SWE. 

In order to study the radiative behavior of the field, it is 
most helpful to transform this equation to new coordinates 

x=r/(l +r),y= -COSB, Odxdl, -1dy61. (13) 

This serves to map an infinite radial domain into a finite 
coordinate region, and assigns infinitely distant radial 
points to the edge of the coordinate patch at x = 1, denoted 
as radiative infinity, where the purely radiative fields can be 
identified. We may convert Eq. (12) into these coordinates 
by using 

r=x/(l-x), (14) 

L2g= -(I -YZ)g,,+2Yg,- (*Yy2). (15) 

2.2. Energy 

The field energy stored in a characteristic hypersurface as 
well as the power radiated out and escaping to radiative 
infinity are of paramount physical interest. For nonlinear 
generalizations of the SWE, such as Eq. (lo), solutions are 
difficult to construct. Conversation of total energy provides 
an important global check on the behavior of numerical 
solution when exact solutions are not available. 

The energy content of a hypersurface of constant u is 
given by 

E(u) = -& ji’ dcp j: sin 8 d0 jam r2 dr 

=+-j;‘dd jI,h j)x{[Wx.x-f]2 

+ (1_ y2) y2 I w’ 
x2( 1 - y)’ 

+2v(y-“‘)&}, 

where the potential V(@) is related to the nonlinear source 
by f( @) = - V’(G). The power radiated at time u across a 
spherical surface at constant r is 

P(u)=; j;zdq5jj sin t9 d0 @,( @,, - a,). (17) 

When the integral is evaluated over the sphere at 
radiative infinity, the expression above simplifies to 

(18) 

With these definitions, the field obeys the global conserva- 
tion law 

E(u,) = E(q) + j” P(u) du. 
4 

(19) 

(This may be derived from the usual application of Gauss’ 
law to a four-dimensional volume bounded by the charac- 
teristic hypersurfaces u0 and ui and by radiative infinity.) 

Note that the energy density consists of a contribution 
from the field gradients and one from the potential V but it 
depends only upon values of Q, on the characteristic cone. 
This means that we can read off the energy density from a 
single u-snapshot of @, as opposed to a t-snapshot in which 
the values of Gt would contribute. 

3. NUMERICAL ALGORITHM 

To develop a discrete evolution algorithm, we work on 
the set of lattice points 

u,=n Au 

x;=iAx 

Yj=.iAY 
(20) 

dk=kAd 

and denote the field at these sites by 

g& = gt”n, x,2 Yj3 4k). (21) 

(We will generally suppress the angular indices j and k.) 
In choosing a specific parallelogram to rewrite Eq. (12) 

in the u-x coordinate plane, it is not possible to place the 
corners P, Q, R, and S at coordinate grid points. This is 
prevented since the slope of the characteristics is not 
constant in these coordinates; i.e., the coordinate velocity of 
propagation depends on the location. Detailed numerical 
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experimentation suggests that a stable algorithm with high 
accuracy will result from the choice made in Fig. 2. The 
essential feature of this placement of the fundamental 
parallelogram with respect to a coordinate cell is that the 
sides formed by incoming characteristics intersect adjacent 
u-hypersurfaces at equal but opposite x-displacements from 
the neighboring grid points. This leads to second-order- 
accurate expressions for coordinates of the vertices 

x,- I - xp = XR -xi- 1 

=Au (1 -x~P,)~/~ 

xi-xQ=x,-xi 

= Au (1 - ~~)~/4. (22) 

The field values at the vertices of the parallelogram are 
obtained by quadratic interpolation, e.g., 

g,= {gi-2(xP-x,-1)(xP-x,) 

-2gi~,(xP-xi~,)(xP-xi) 

+ ~~(XP-X,~~)(XP-X;~~)~/(AX)‘. (23) 

By doing a Taylor series expansion of g around the point 
at (xi- ,,2, u,+ ,,2), it can be seen that 

g, = G, + O((AX)~), (24) 

/ 

‘i- 1 

FIG. 2. The same fundamental characteristic parallelogram PQRS 
which was geometrically defined in Fig. 1 is now displayed superimposed 
upon the new (x, u) coordinates. Note that the parallelogram no longer 
falls on the coordinate grid. 

where G represents the exact analytic solution. Cancella- 
tions between like terms yields 

ga-gp=GQ - G, + O((AxJ3), (25) 

gQ-gg,-gs+g,v=Gp-GP-Gs 

+ G, + O((AX)~ Au). (26) 

Note that calculating the expression go - g, - g, + g, to 
this accuracy is equivalent to computing the second 
derivative g,, at the point (xi- ,,2, u,+ ,,2) to second order. 

Now, the integral in Eq. (12) can be evaluated by treating 
the integrand as a constant over the parallelogram, with 
value equal to the average at the center. The radial 
coordinate of the point at the center is calculated as 
Y,, = (up + r,)/2. To compute the nonlinear term, the value of 
g at r, is taken as the average g,. = (g, + g,)/2, with g, and 
g, evaluated from second-order linear interpolations over 
adjacent points on the grid. The angular derivatives in 
Eq. (12) are replaced with standard second-order-accurate 
finite difference approximations. L2g is calculated on the 
grid points, and the same interpolation procedure is used to 
obtain the value of L2g,. The integral term is approximated 
by 

I [--L2g+r3f(g/r)]dudr/r2 
z 

= [ - L2g, + r;‘f(g,/r,.)] Jz du dr/r2 

=2log !k!k ( )C -L’g,.+r;ff k ( >I . (27) 
rprs < 

Note that in the above procedure we carried all interpola- 
tions and derivatives to second order, hence the integrand is 
accurate to second order in Ax and Ay. The result of these 
substitutions gives the final finite difference equation 

g~+‘(x,+x,-xj~,-x,~,) 
=2g~f:(Xe+Xp-Xi~z-Xi) 

-g~‘:(xQ+x,-x,-,-x,) 

+ {g1+,(xs+xR--xi-, -x,1 

- 2g:(x,+x,-x,-,-xj+,) 

+ g~-,(xS+x,-Xi-Xj+l)} (xs-XR) 
(XQ - XP) 

dr du 
+f 7 

(AxI L ~xg-xp~. (28) 

Equation (28) connects values of gl+’ with those of 
neighboring points on the coordinate lattice which are 
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either earlier in time (gr- i , gr , gl+ i ), or else contemporary 
but located at smaller radius (gl’i, glt: ). Consequently, it 
is possible to move through the interior of the lattice, com- 
puting g’+ ’ explicitly by an orderly march. This is achieved 
by starting at the origin at time u,, + , . Field values vanish 
there. Proceed outward one radial step using the boundary 
conditions discussed below. Repeat for all angular sites on 
the lattice. Step outward to the next interior radial point, 
apply Eq. (28) for all angles, and iterate this process 
throughout the interior. Thus, all the field values out to 
radiative infinity along the new characteristic cone at u,, , 
are updated, completing one evolutionary time step. 

To completely specify the evolution algorithm we need to 
describe the treatment of g(u, x, y, 4) at the coordinate 
boundaries. Initial data is given at u = u0 to start the 
method. Periodic boundary conditions are applied for 
the angle 4, so that g(u, x, y, 0) = g(u, x, y, 27t). Angular 
derivatives at the axis y = f 1 are computed using second- 
order-accurate forward or backward differences. At the 
radial edges of the coordinate grid at the origin and 
radiative infinity, Eq. (28) no long applies, and it is 
necessary to reapply the basic integral identity Eq. (12). 
This is done in a straightforward fashion; g vanishes at x = 0 
so that g;+’ = 0, whereas at radiative infinity the points Q 
and S are grid points so that xp = xs = 1. 

4. TESTING THE NUMERICAL CODE 

In this section, we will test the new theoretical approach 
just introduced with some numerical test problems. For 
simplicity, we will restrict attention to the evolution of fields 
with both axial symmetry and reflection symmetry across 
the equatorial plane (i.e., g is an even function in y). 

To better understand the stability of the explicit algo- 
rithm, we consider the geometrical constraints imposed 
by the Courant-Friedrichs-Lewy (CFL) condition. This 
requires that the analytic domain of dependence for the 
equation be contained in the numerical domain of 
dependence. This will be satisfied if each grid point at U, 
appearing in Eq. (28) lies on or outside of the past charac- 
teristic cone of the point (xi, yj, dk, u,, 1) to which the field 
is being evolved. 

In coordinate xX = (t, x, y, z), the condition that two 
points p and q lie on a characteristic is, according to Eq. (5) 

We want to express this condition in radial coordinates, 
but since we are interested here in problems with axial 
symmetry, it suffices to consider points at d = 0. Then two 
points p and q, with coordinates 

(30) 
q”=(O,r-Ar,8+A0,0), 

\ I 

will lie along a characteristic if and only if 

(Au + Ar)2 - (r sin 9 - (Y - Ar) sin(8 + de))* 

- (r cos e - (r - Ar) cos(8 + Ae))* = 0. (31) 

For p in the future of q, the solution is 

AU 
dr=-1+~K2+(K-1)2-2K(K-l)cosA~, (32) 

where K= r/Ar. For fixed r, the smallest allowed value of Au 
occurs at the equator, where 8 = 7r/2 and Ad = Ay. This can 
be re-expressed in terms of the x-coordinate of the point p 
using 

Ar=r,-r,=Ax 
1 

(1 -x,)(1 -x,-Ax)’ (33) 

so that 

K,sU -x,-Ax) 
Ax (34) 

and 

x(1-x,)(1-x,-Ax). (35) 

Equation (35) determines the maximum allowable retarded 
time step Au in terms of the grid spacings Ax and Ay. The 
maximum time step increases with increasing values of xp 
and it is approximately inversely proportional to the square 
of the number of angular points. For grid points sufficiently 
close to the origin, we can approximate Eq. (35) by 

Au z K AXE, (36) 

where the coefficient K is given by 

K= [(I- 1)/2 (37) 

and the index I labels the innermost site on the numerical 
lattice where the algorithm is applied. The final stability 
picture is complicated by the fact that a different scheme is 
used to evolve the origin and the first radial point (i = 0, 1) 
where special boundary and start-up conditions are used 
(see the last paragraph of Section 3). These points also feed 
into the numerical algorithm for i = 2, 3. Thus, the first truly 
independent use of the algorithm occurs when i = 4. 
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Consequently, we should expect stable propagation for 
time steps satisfying Eq. (36) with Z in the range 2 <I< 4. 
For initial data given by 

do, r, Y) = 
8(4r3y2 + 2r + 1) 

(1+2r)’ 
(38) 

and for a fixed (Ax)- ’ = 99, numerical stability tests verify 
the validity of this estimate with Z= 3.4, as indicated in 
Table I. 

This situation is in constrast to the stability requirements 
for normal Cauchy evolution where application of the CFL 
condition leads to the analogous requirement that 

At<$ZAxAy. (39) 

The extra power of Ay in Eq. (36) is the penalty paid 
for the overall simplicity of the characteristic method. 
Nevertheless, the CIVP approach offers offsetting advan- 
tages, especially for applications to multicomponent fields 
such as those of general relativity. 

With stability explored, we turn next to study the 
question of global convergence. Here, we introduce as a 
measure of error the I, norm of the difference between g, the 
numerical solution, and G, the exact analytic solution, i.e., 

llg-GIl,=max l(g;k-GG”,,)I, (40) 

where n, i, j, and k range over all lattice sites. 
The following three global exact solutions of the SWE 

represent fields of different pure multipole moments 1 in 
terms of Legendre polynomials P[( v): 

G”‘(u, r, y) = r’+ ‘PAY) 
(u+l)‘+l (u+.&.+l)/+I’ l=2,4,6. (41) 

These solutions represent waves which are regular for 
u > - 1. They provide comparison data for a family of 
corresponding numerical solutions which are run on a series 
of different grid sizes for u > 0. Figure 3 shows the global 
error as a function of grid size Ax (while Ay and du are kept 

TABLE I 

Stability Coefficient K as a Function 
of the Step Size dy 

(AY)-’ K(stable) K(unstable) 

14 4.1 4.3 
19 3.9 4.3 
24 4.0 4.6 
29 4.0 4.2 
34 4.0 4.2 

/ 
I=2 

/ L 

-2.4 -2.2 -2 

i 

FIG. 3. The convergence of the numerical to the exact solution is 
shown for pure multipole initial data for the vacuum scalar wave equation. 
The error is measured by the I, norm. Lines connect points corresponding 
to the same multipole and different grid spacing. 

at fixed ratio to Ax). The log-log plots approach slope 2 for 
small Ax, as is expected for a second-order-accurate 
method. 

As a test problem, we examine the case of the nonlinear 
SWE Eq. (10) with f(Q)= -kQ3, so that V(Q)= fkcD4. 
This equation has attracted considerable interest as a model 
for a conformally invariant quantum field theory (the 
so-called “Q4” theory [7], see also [S, 91). It is of special 
interest since Q4 is the lowest order monomial potential 
which allows 0( l/r) radiation fields. 

We have found an exact axisymmetric solution, with t 
and y reflection symmetry, given by 

2a 112 
@=2 

8akr2y2 + [u(u + 2r) + 2ak212 ’ (42) 

This solution has singularities in the equatorial plane 
(y = 0) on the hyperbolae t* - r* = - 2a’k. For negative k, 
the singular hyperbolae will be spacelike, and this solution 
will be regular between them for u in the range 
- (2k)“’ a < u < + (2k)“* a. Within this range, we can test 
our nonlinear code and check its behavior in the approach 
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to a singularity. Detailed tests again confirm global second- 
order convergence using the I, norm. 

For this exact solution, the energy is given by 

E(u) = 
a[atan(m/u)(u’ - 3m2)(u2 + m’) -mu(u’ + 3m2)] 

4m3u2(u2 + m’) 

where m = (2ak)‘j2. This allows detailed numerical checks 
on the energy, as well as on the global energy conservation 
during evolution. Using a grid of 65 radial and 33 angular 
points, numerical solution for the case a = 4, k = 1 was 
carried out from different initial surfaces. Near the singu- 
larity, starting from u,, = 0.1 the amplitude of the solution 
decays by an order of magnitude as it evolves to u, = 0.2. 
This limits overall numerical accuracy for the field at the 
end to 1 %, and conservation of energy holds at the same 
level. For evolution of the same time duration between 
u0 = 1.0 to ui = 1.1, far from the singularities, conservation 
of energy is verified to better than 0.01%. 

5. DISCUSSION OF NUMERICAL 
EVOLUTION RESULTS 

We shall now illustrate the effectiveness of the code in 
revealing new physical features of nonlinear scalar waves, 

‘; I 1 
0 0.2 0.4 0.6 08 

x 

FIG. 4. Initial data for @(u,, x) used to compare the qualitative 
behavior of different potentials. 

especially those that are intrinsically related to charac- 
teristic hypersurfaces and to radiative infinity. We wish to 
emphasize that many of these phenomena, which can be 
described in a natural way in terms of our algorithm, would 
be difficult or impossible to extract in conventional numer- 
ical approaches. 

Using some examples of numerical solution, we shall 
discuss the generic effects of nonlinearities on propagation, 
backscattering, and radiative tails. We also explore different 
nonlinear potentials to get a feeling for the consequences of 
specific aspects of the potential such as saturation and 
degenerate minima. 

It is important to establish some effective basis for reveal- 
ing those qualitative properties generic to fields evolving 
under the action of different nonlinear potentials. We 
accomplish this here by choosing common initial data for 
all our examples. We restrict our attention to spherically 
symmetric cases. While we have made samples of angular 
dependent nonlinear evolution, these lead to more complex 
behavior obscuring simple physical insights. It is not our 
purpose to treat such details here. Furthermore, in order 
to isolate those features intrinsic to the data from those 
intrinsic to the evolution, we choose very simple initial data 
having the form of a (rounded) step function for @(u,, r). 
This corresponds to a (rounded) sawtooth shape for g(u,, v) 

FIG. 5. Initial data for g(u,, x) used to compare the qualitative 
behavior of different potentials. 
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as shown in Figs. 4 and 5. (The rounding is implemented by 
third order polynomials.) The discussion will, at first, be 
expressed in terms of displays of g(u, x) for differing poten- 
tials I/. Later, we will discuss features which only become 
prominent when expressed in terms of CD. 

5.1. Tails 

As is well known, Huyghen’s principle applies to a few 
special systems such as the linear wave equation in an odd 
number of spatial dimensions. For such systems, radiation 
propagates outwards along the forward characteristic 
cone and does not leak into its interior. For more general 
hyperbolic systems, such as Eq. (lo), radiation backscatters 
energy into the interior while traveling on an outward 
characteristic cone. Even when the initial field has compact 
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support, this leaves behind a radiative tail which survives 
over long time scales. This field is typically small and dies off 
as multiple backscatterings dissipate its energy in radiation. 

The slope of g at radiative infinity (on a g(x) vs x graph) 
is a dynamical quantity of particular relevance for the 
development of tails. It is conserved for the linear wave 
equation and for potentials of higher than fourth order 
in @. (It is a special case of a general class of asymptotic 
quantities that are conserved for fields which are suitably 
linear at radiative infinity [lo].) 

This quantity, corresponding to the monopole term in the 
0(1/r’) part of @, is not, however, conserved for the Q4 
theory. We may see this by expanding g as 

g= c anlm(U) YdR $1 
n,l.m rn (44) 

0.05 0.1 0.15 0.2 0.25 

l/U2 

FIG. 6. The time dependence of radiative tails for scalar waves propagating in a vacuum is illustrated by the behavior ofg and g, at radiative infinity. 
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and substituting this into Eq. (10). For a potential of order 
p, this gives 

-&Lr = &TV, - 
L=g kg” --- 
r2 ).P- 1’ (45) 

For p = 3, corresponding to G4 fields, this leads to the 
relation 

d 

dua 1oo = (k/2) aho. 

First, suppose that the nonlinear coupling is turned off 
(k = 0), so that alOO is a constant. Then if the initial data has 
compact support, this constant is initially zero and must 
remain zero. On the other hand, the conservation law 
implies that linear fields, with initial data for which alOO # 0, 
cannot evolve to zero in any finite retarded time. As an 
example consider the field CD = (u(u + 2r)) ~ ‘, a solution of 
Eq. (9) in the future of the coordinate origin. For this field, 

X 

g=U[2x+U(l -x)]’ (47 1 

At radiative infinity (x = l), g, = d which leads to the 
radiative tail g(u, 1) = 1/(2u). The code successfully tracks 
this conservation law until the field localizes into the last few 
grid cells before x = 1, as shown by the numerical runs 
plotted in Fig. 6. In the nonlinear case of Q4 fields, even if 
the initial data were compact, alOO would not vanish during 
the early stage of nonlinear radiation. Then, when the non- 

FIG. 7. Overview of the evolution of @ for linear scalar waves. There 
is no backscattering and the initial field dissipates completely. 

linear field dissipates into the linear regime of Eq. (9) it is 
left with a nonvanishing alOO which results in a l/u radiative 
tail. 

5.2. Linear Waves (V= 0) 

The evolution of @, for an initial pulse with g= r@ 
having a sawtooth profile, is displayed in Fig. 7 and the 
accompanying radiation in Fig. 8. Here g satisfies the one- 
dimensional wave equation. Pulse-like data on an initial 
outgoing characteristic cone corresponds to an initial state 
consisting of purely incoming radiation. The sawtooth 
travels toward the origin with speed ArlAu = l/2, moving in 
analogy with a pulse on a string traveling toward a perfectly 
reflecting barrier. However, in this case, as the pulse hits the 
origin it is immediately transported to infinity in terms of 
the characteristic coordinate U. Also, note that the velocity 
of propagation is not constant with respect to the x-coor- 
dinate so that some alteration in pulse shape appears in the 
figures. Because of the phase reflection, the instantaneous 
radiation produced by the leading part of the pulse super- 
imposes destructively with the trailing part. 

Initially the radiation power is constant, in accord with 

1 2 4 6 8 10 

FIG. 8. Energy emitted to radiative infinity for linear scalar waves. 
The graph shows the separate time dependences of the hypersurface energy 
and the total power radiated at infinity and verities the conservation of 
their sum. 
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the linear r dependence of the leading edge, and the total 
energy in the pulse decreases linearly in time. It is a very use- 
ful feature of a retarded coordinate system that the energy 
density Eq. (16) can be read off from an instantaneous 
u-snapshot of the pulse. For V= 0, it is proportional to 
(d@/dr)2 so that it is concentrated in the trailing edge of the 
pulse. When this edge hits the origin there is a large burst of 
radiation which carries away the remaining energy in the 
system. 

As expected, no field remains after one crossing time (the 
time it takes the outer edge of the pulse to propagate to 
the center). The entire evolution is strictly governed by 
propagation effects with no other underlying story of 
physical interest. There is no tail to the radiation and the 
slope of g(x) at radiative infinity remains zero throughout 
the evolution in accord with the conservation discussed in 
Section 5.1. 

5.3. Strongly Nonlinear Potential ( V = kQ4) 

For this potential, the effect of the nonlinearities grows 
with increasing @. The initial data starts in a strong field 
configuration and so probes precisely this important case. 
The time development for the standard sawtooth initial 
data is radically changed from the previous example and 
proceeds along a markedly different course. This is shown in 
Fig. 9 and Fig. 10 (in all numerical runs we set k = 1). 

The initial energy of the system from Eq. (16) is now 
totally dominated by the self-interaction term in the poten- 
tial which far outweighs the field gradients. Consequently, 
the energy stored in the initial data is almost a factor of 20 

FIG. 9. Overview of the evolution of @ for scalar waves in a @potential. 
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higher than for the linear case corresponding to vanishing 
potential. 

As the initial sawtooth starts its development, the 
strong nonlinear potential acts to backscatter the wave, 
immediately repelling any inward propagation onto the 
outgoing characteristic cone. By the very first step, a violent 
burst of radiation reaches radiative infinity, carrying off 
about 80% of the large initial energy. This depletes the 
strength of the remaining field and so effectively turns 
down the strength of the self-interaction, reducing the back- 
scattering. Consequently, the remaining field enters a 
quasilinear regime and resumes the inward propagation 
associated with a linear field. Then, it is only able to carry 
off the bulk of the remaining energy after one crossing time. 

However, the imprint of the nonlinear potential still 
remains observable in the tine details of the tail to the 
radiation at radiative infinity. After long times, g still per- 
sists there. In Fig. 11 the behavior of this remnant amplitude 
decreases as l/u, just as expected from the considerations of 
Section 5.1. This figure also shows the change of the slope 
of g(x) at radiative infinity due to the non-conservation 
also discussed in that section, In the quasilinear regime, 
this change progresses more and more slowly with time. 

I”“l”“r”“i”” I”” 

* E(u) 

x P(u) 
- E(u) + P(u) 

5 10 15 20 25 30 

FIG. 10. Energy emitted to radiative infinity for scalar waves in a @“ 
potential. The graph shows the separate time dependences of the hyper- 
surface energy and the total power radiated at infinity, and verifies the 
conservation of their sum. 
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1/u= 

FIG. 11. The time dependence of radiative tails for scalar waves propagating in a @“ potential is illustrated by the behavior ofg and g, at radiative 
infinity. 

Theoretical analysis indicates that the slope approaches a In (u, r) coordinates, a purely t-periodic @ would have to 
constant value as l/u’, in agreement with the numerical satisfy Eq. (48) on an outgoing characteristic cone. In fact, 
behavior. the field in the inner region with characteristic data 

In (t, r) coordinates, a field satisfying ~0,. = 0 will undergo CD = const does not undergo a sign reversal but gently settles 
a periodic oscillation in any potential with a minimum. to zero, as is evident in the numerical solution displayed in 
For an initially large amplitude in a Q4 potential, this Fig. 12. There is a purely analytic explanation of this 
would introduce a rapid oscillation leading quickly to a sign behavior in terms of the exact solution 
reversal in @. In the present case, one might have expected 
the field to undergo such a sign reversal in the inner region a 
where the initial data is constant. However, in terms of (u, r) @= 

~(2.4 + 2r) + (k/2) a” (49) 

coordinates, the situation is quite different. The condition 
d> = D(t) becomes @, - @, = 0 which leads, via the wave 
equation Eq. (1 l), to the equation for a particle in a where a is a free parameter. Evaluation of this solution (49) 

potential, 
on the hypersurface u. = 0 induces characteristic data 
@ = const. Evolution of such data therefore leads to the 

a*@ -= -V'(D). (48) monotonic asymptotic decay described by (49). 
ar* One outstanding feature, which develops in Fig. 9 on the 
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scale of the crossing time, is the reconstruction of a some- of the small extent of this region and the falling value of the 
what attenuated and distorted version of the initial data. potential there, the total energy is only about 10% higher 
This is apparently an effect of backscattering but we do not than in the linear case. This initial configuration and the 
understand the details of the underlying mechanism. nonlinear field equation correspond to a bubble surrounded 

by a domain wall of the sort that has been of some recent 

5.4. Saturated Nonlinear Potential ( V = k sin4(@)) 
interest to studies of the early universe. 

The evolution of this system is shown in Figs. 13 and 14. 
In this case, since there are no known exact solutions, The saturation of the potential vitiates the effects of back- 

numerical simulations were performed with successive mesh scattering, and so there is no large initial surge of outgoing 
refinement until there were no discernible differences in radiation. The field propagates toward the origin, and, after 
wave forms. Concomitantly, energy was conserved to high one crossing time, emits a pulse of radiation as the tooth 
precision. edge hits the origin. This carries off about one-third of the 

For @ 6 n, this potential behaves much as the Q4 model total energy of the system in terms of radiation. After 
in the quasilinear regime. As @ increases into the nonlinear another crossing time, the remaining energy is redistributed 
regime, the potential exhibits a succession of degenrate in a configuration similar to the initial kink. Then, the field 
minima and maxima, which leads to trapping effects, but recollapses toward the origin, and after another crossing 
remains bounded in value, which leads to saturation effects. time again emits a pulse of radiation, removing about as 
The initial data starts the field off in the first minimum of the much energy as the first pulse. At this stage, the system is 
potential as the sawtooth in g(x) ramps up. Past the edge of quasilinear. As in the a4 case, backscattering of the initial 
the tooth, the field is in the vacuum state, degenerate in radiation pulse leads to several rough reconstructions of the 
potential energy with the first minimum. At the edge of the initial energy distribution as shown in Fig. 15. Experimenta- 
sawtooth, a transition region connects the two minima. tion with other potentials indicates that this is an important 
Only in this region does the field have any energy density, generic effect. Unfortunately, we have not found analytic 
arising here from both field gradient and potential. Because means of investigating this phenomenon. 

A striking feature of the solution is the formation of a 
+ I 1 / / long-lived node, at which Qu vanishes, occurring at about 

the same time that the kink reforms. At u = 7.6, the field at 
the point x = 0.6 settles on a minimum of the potential (at 

N 

0 02 04 0.6 08 1 

x ‘.O, 

FIG. 12. Behavior of constant @ interior region of initial data for FIG. 13. Overview of the evolution of @ for scalar waves in a sin4(@) 
scalar waves propagating in a (P4 potential. Note the monotonic approach potential. Note the multiple approximate reconstructions of the initial 
of the scalar field to zero. - 

contiguratton. 
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c 

5 10 15 20 25 0 0.2 0.4 0.6 0.8 1 

FIG. 14. Energy emitted to radiative infinity for scalar waves in a 
sin“(@) potential. The graph shows the separate time dependences of the 
hypersurface energy and the total power radiated at infinity and verifies the 
conservation of their sum. 

‘- 0, 
FIG. 15. Distribution of energy density for scalar waves propagating 

in a sin4(@) potential. Note the approximate reconstruction of the initial 
state after one crossing time. 

FIG. 16. Node formation during the evolution of scalar waves in a 
sin“(@) potential. Superimposed curves represent snapshots made between 
u = 7.6 and 9.1 at time intervals da = 0.1. 

@ = n). As displayed in Fig. 16, the value of the field at this 
point remains constant between u = 7.6 and u = 9.1. During 
this interval, energy flows into the neighborhood of this 
node from both the inner and outer directions. Initially the 
slope of @ at the node is zero, but as energy accumulates, 
the slope gradually increases. Finally, the kinetic energy 
reflected in the increasing slope of @J lifts the field out of the 
potential well, and the configuration propagates inward. 
This example again illustrates the underlying influence of 
one-dimensional solitary wave phenomena, which in some 
approximate sense take place also in the three-dimensional 
case. 

6. CONCLUSION 

In this work, we have developed an algorithm for the 
numerical solution of nonlinear wave equations which 
implements the CIVP approach on characteristic cones. 
The physical reasons to favor this approach over the more 
common Cauchy problem were outlined in Section 1. We 
have shown that this algorithm is stable, subject to the CFL 
condition. We have tested the algorithm against exact non- 
linear solutions and have shown that the numerical solution 
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is globally convergent to second order in the grid spacing. 
Although we have not extensively investigated the effects 
of numerical dispersion in our approach, its effects did 
not seem important even in test cases with initial data con- 
taining large spatial gradients. Numerical tests on various 
models also demonstrate that the algorithm is conservative, 
in the sense that it accurately satisfies energy conservation. 

In the next stage, we have used our code to study non- 
linear systems of physical interest, such as self-interacting 
fields with Q4 and sin4 @ potentials. In this process, 
the algorithm proved effective in revealing nonlinear 
phenomena, such as backscattering, the formation of kink- 
like configurations, node formation, and radiative tail 
decay. Our studies show that it is numerically possible to 
implement compactification techniques to treat radiation at 
radiative infinity in a CIVP approach. Tests made with Q4 
fields indicate that the CIVP can also be used to study 
singularity formation. 

The physically simplistic models discussed here were 
chosen more to illustrate methodology and mathematical 
issues than to represent actual phenomena. In a more 
realistic application, a key aspect of the problem would be 
the selection of initial characteristic data to represent 
properly the source of the wave disturbance. This is no 
different, in principle, than the initial data problem in the 
more familiar Cauchy approach, where there exists much 
experience and physical intuition to serve as a guide. Two 
types of generic situation exist. 

In the first, the system is excited by incoming waves. An 
initially linear wave will focus in intensity so that nonlinear 
effects will become important. The goal is to study these 
nonlinear effects numerically. The initial data problem is to 
specify the waveform at some initial time when the system is 
still linear. One way to induce characteristic data is by 
evolving Cauchy data forward in time to a characteristic 
cone by treating the linear case analytically. 

In the second situation, the system is excited by an 
external source which drives the wave equation. This would 
be incorporated into the characteristic evolution algorithm 
as an additional term in the integral equation Eq. (12). 
A corresponding procedure would be implemented in the 
Cauchy approach. A typical example is a sound wave 
emanating from an explosion. The initial condition is that 
there be no incoming waves. The characteristic initial data 

and the Cauchy data would be set to zero just prior to the 
explosion. Waves would arise as a result of the driving term. 
For this case, the procedure for formulating the two initial 
value problems is similar, although the characteristic 
version more efficiently avoids the wave-free points of 
space-time. 

The basic algorithm is directly applicable to other 
hyperbolic systems such as Maxwell, Yang-Mills, and 
gravitational fields. The additional step necessary here is 
to numerically integrate some radial differential equations 
which intermediate the evolution equations on each charac- 
teristic cone. Our primary motivation is the solution of the 
field equations of general relativity, for which numerical 
solutions of these characteristic cone equations are already 
available [3]. However, we also wish to encourage 
application of this approach to hydrodynamical problems. 
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